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A model to reproduce inelastic electron scattering cross sections as determined from reflection-electron-
energy-loss experiments is proposed. This model is an extension of model B from Yubero and Tougaard@Phys.
Rev. B46, 2486~1992!#. Here, a more general geometry is considered where the incidence and exit angles can
be varied. Then, for a given geometry and energy of the primary electrons, the dielectric function of the sample
is the only input for the calculations. A systematic study of the behavior of the model is presented for the case
of Si and Fe.

I. INTRODUCTION

Quantification of electron spectroscopies as x-ray photo-
electron spectroscopy, Auger electron spectroscopy, REELS
~reflection-electron-energy-loss spectroscopy!, or x-ray ab-
sorption spectroscopy rely on a thorough understanding of
the energy losses of electrons as they travel within the sur-
face region~up to 100 Å depth! of solids. Therefore, the
study of the inelastic scattering properties of low-energy
electrons~100–10 000 eV! is very important for these sur-
face electron spectroscopies.

The inelastic electron scattering cross section describes
the energy losses of electrons traveling in solids. In principle,
this function depends on the energy of the electron interact-
ing with the solid, its trajectory, and the dielectric properties
of the medium considered.

It is well known1,2 that the inelastic scattering cross sec-
tion Kbulk~E0,\v! for electrons traveling in an infinite me-
dium is given by

Kbulk~E0 ,\v!5
1

pE0a0
E
k2

k1 dk

k
ImH 1

e~k,v! J ,
whereE0, \v, andk are the kinetic energy, the energy loss,
and the momentum transferred by the electron, respectively,
k65(2m/\2)1/2[E 0

1/26(E02\v)1/2] are the maximum and
minimum momentum transfer allowed by the energy and
momentum conservation laws,a0 is the Bohr radius, ande
the dielectric function of the medium. For small values ofk,
the dependence ofe on k is weak compared with 1/k, so the
general shape ofKbulk~E0,\v! is given as a first approxima-
tion by the energy-loss function~ELF! Im$1/e~v!%. Then, the
ELF governs the energy losses of electrons traveling in the
bulk of a solid.

If we consider an electron traveling through a thin foil,2–5

it is found that the corresponding inelastic scattering cross
sectionK foil(E0 ,\v,b,a) is given by

K foil~E0 ,\v,b,a!5Kbulk~E0 ,\v!1Ksurf-foil~E0 ,\v,b,a!,

where in generalKsurf-foil(E0 ,\v,b,a) is a complicated
function ofe, the foil thicknessb, and the angle of incidence
a of the primary electrons with respect to the surface normal
of the foil. Ksurf-foil(E0 ,\v,b,a) gives the surface contribu-
tion to the total energy losses of the electrons. These surface
excitations are produced within a few angstroms of the total
thickness of the foil localized at the two interfaces of the foil
with the vacuum. The size of this ‘‘surface region’’ has a
physical extension that increases with the square root of
the energyE0 of the electrons.2,5 It comes out that, for
large enough thicknesses, the surface energy-loss function
Im$1/~e11!% governs the inelastic cross section
Ksurf-foil(E0 ,\v,b,a).

The interpretation of inelastic electron scattering cross
sections obtained from REELS experiments appears more
complicated than the situations described above. The elec-
trons follow many different trajectories inside the solid
within its surface region, and all of them contribute to the
measured cross section. Many authors6 have considered that
the combined effect of the surface and bulk excitations can
be modeled by a linear combination of Im$1/e% and Im$1/~e
11!%. Although reproducing the shape of experimental cross
sections with this approximation is possible, the fitting pa-
rameters carry limited quantitative information.7

In Ref. 8 a model was considered where it is assumed that
the surface energy losses in a REELS experiment can be
obtained from the surface energy losses calculated for a
transmission geometry when the thickness of the foil is large
enough that the surface losses have reached their saturation
value.2–5 The validity of this approximation is ques-
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tionable because the major part of the electrons that contrib-
ute to the spectral intensity in the energy region of interest
have traveled a path length less than;2 inelastic mean free
paths ~IMFP!. Thus, the surface term in Refs. 2, 3 varies
considerably for values ofa up to;2 IMFP’s. In practice,
the surface term reaches its saturation forb.20E0

1/2/\v
~where\v andE0 given in eV, and a given in Å!, which for
the losses of interest~up to ;100 eV! corresponds to path
lengths larger than 1–2 IMFP. Furthermore, the geometry of
the REELS experiment is different from the transmission ex-
periment, and it is not clear that the surface energy losses
measured in an electron reflection experiment will be well
reproduced by those calculated for electrons transmitted
through a thin film.

A more realistic model was developed to describe the
electron energy losses in REELS experiments.9 It is based on
a quantitative description of the energy losses of electrons
traveling in a certain REELS geometry~normal incidence of
the incoming electrons and specular reflection by an elastic
scattering event!. It takes into account the depth dependence
of the effective inelastic scattering cross section. The formal-
ism allows one to obtain information about dielectric prop-
erties of solids as well as to estimate the IMFP. During the
last years it has been successfully applied to several
materials10,11 ~Si, SiO2, ZrO2!.

In this work we present an extension of that model to treat
a more general geometry in which both the angle of inci-
dence and exit angle for the electrons can be varied arbi-
trarily. The only restriction is that both trajectories must lie
in the same plane normal to the surface.

The present formalism is based on the so-called ‘‘surface
reflection model.’’12,13 This model has been quite useful for
applications in studies of particle-surface interaction pro-
cesses, and in calculations of the energy loss of particles
reflected or moving in the proximity of a solid surface.13,14

The approach allows one to derive the various interference
terms that influence the electron energy dissipation. In the
frame of the proposed new formalism, model B in Ref. 9
appears as a particular case for a given geometry.

II. THEORY

We study the problem of an electron traveling in a REELS
geometry, as shown in Fig. 1~a!. An incident electron travels
in vacuum toward a solid with a velocityvi5(v' i ,v i i),
wherev' i5v cosui and v i i5v sinui are, respectively, the
components perpendicular and parallel to the surface, andui
is the angle of incidence measured with respect to the surface

normal. At t52a/v' i it enters the solid characterized by its
dielectric functione~k,v!. At the point a5~a,0! inside the
solid at t50, it is elastically backscatered. Then, it changes
direction and it leaves the solid with a velocity
vo5(2v'o ,v io), where v'o5v cosuo and v io5v sinuo
are, respectively, the components perpendicular and parallel
to the surface, anduo is the exit angle. It is assumed that the
energy lost by the electron\v is much smaller than the pri-
mary energy of the electronE05

1
2mv

2, so uvi u5uvou.
We want to calculate the inelastic electron single scatter-

ing cross section to be compared with the cross section mea-
sured experimentally in a REELS experiment. To do that, we
first have to obtain an expression for the effective inelastic
electron scattering cross sectionKeff(E0 ,\v,a,u i ,uo). This
is defined as the average probability that the electron shall
lose energy\v per unit energy loss and per unit path length
when traveling in the trajectory described in Fig. 1~a!. The
average is taken over the total path length
x5a~1/cosui11/cosuo! traveled by the electron in the solid.
Then, the experimental REELS cross section is a ‘‘weighted
average’’ ofKeff(E0 ,\v,a,u i ,uo) for different values ofa
~see below!.

It is found thatKeff(E0 ,\v,a,u i ,uo) can be obtained
from the expression9

Keff~E0 ,\v,a,u i ,uo!5ReH 22i

~2p!4\2vx

3E dkE drE dt

3ei ~k–r2vt !k–vre~r ,t !F ind~k,v!J ,
~1!

where re~r ,t! is the charge density of the electron and
Find~k,v!5F~k,v!2Fvac~k,v! is the potential induced by the
electron in the full space@F~k,v! being the potential for the
situation in Fig. 1~a! and Fvac~k,v! is F~k,v! for e51#.
Then, the first step of our calculation of
Keff(E0 ,\v,a,u i ,uo) is to obtain the potentialF~k,v!.

In this paper, the ‘‘surface reflection model’’12,13has been
used to obtainF~k,v!. It allows one to solve the problem of
calculating the potential of a system of moving charges
within a semi-infinite medium by considering two infinite
pseudomedia~see Fig. 1!. Then, to calculate the potential
F~k,v! in the full Fourier space describing the situation of
Fig. 1~a! two pseudomediaM @Fig. 1~c!# andV @Fig. 1~b!#
are considered. The pseudomediumM is an infinite medium
characterized by the dielectric functione~k,v! with a surface
charge densitysM at x50. In this pseudomedium we con-
sider the electron and its image charge traveling while they
are inside the medium in the real case@Fig. 1~a!# i.e., for
times2a/v' i,t,a/v'o . The pseudomediumV is vacuum
~e51! with a surface charge densitysV at x50. Here we
consider the electron and its image charge traveling while
they are in vacuum in the real case, i.e., for timest,2a/v' i
and t.a/v'o . The scheme is illustrated in Fig. 1, which
shows the real system@part ~a!# and the equivalent pseudo-
mediaV @part ~b!# andM @part ~c!#. The fictitious surface
chargessM and sV are introduced to be able to fulfill the
boundary conditions~see below!.

FIG. 1. Trajectory followed by the electron in a REELS experi-
ment ~a! and the equivalent pseudomediaV ~b! andM ~c!, which
has been used in the present formalism to evaluateKeff ~see text!.
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The charge densityre~r ,t! describing the trajectory in the
real space of the electron and its image chargere8~r ,t! are
given by

re~r ,t !5 H 2ed~r2a2vi t !,
2ed~r2a2vot !,

if t,0
if t.0, ~2!

re8~r ,t !5H 2ed~r2a82vi8t !,
2ed~r2a82vo8t !,

if t,0
if t.0, ~3!

where vi85(2v' iv i i), vo85(v'o ,v io), and a85~2a,0! are
the velocity of the incident image charge, the velocity of the
exit image charge, and the point where it is backscattered,
respectively.

According to the surface reflection model,12,13 the poten-
tial F~k,v! in Fourier space is given byFM~k,v! while the
electron is traveling in the medium (2a/v' i,t,a/v'o)
and byFV~k,v! while the electron is traveling in vacuum
~t,2a/v' i andt.a/v'o!. Then, the pseudomediaM andV
have been introduced to evaluate the pseudopotentialsFM

andFV. The Poisson equations of the two pseudomedia in
Fourier space are

FV~k,v!5
4p

k2
@rV~k,v!1sV~ki ,v!#, ~4!

FM~k,v!5
4p

e~k,v!k2
@rM~k,v!1sM~ki ,v!#. ~5!

Here,rV~k,v! andrM~k,v! are the Fourier transforms of the
pseudo charge densities in each pseudomedium, and they are
given by

rV~k,v!5E
2`

2a/v' i
dt eivtE dr e2 ik•r@re~r ,t !1re8~r ,t !#

1E
a/v'o

`

dt eivtE dr e2 ik•r@re~r ,t !1re8~r ,t !#,

~6!

rM~k,v!5E
2a/v' i

a/v'o
dt eivtE dr e2 ik•r@re~r ,t !1re8~r ,t !#.

~7!

The pseudo-surface-densitiessV(ki ,v) and sM(ki ,v)
are determined by the requirement that the pseudopotentials
FV andFM and the normal components of the displacement
vectorsD n

V andD n
M of each pseudomedia have to be con-

tinuous at x50, i.e., FV(x50)5FM(x50) and
D n

V(x50)5D n
M(x50). From this it follows that

sV(ki ,v)52sM(ki ,v)5s(ki ,v) where

s~ki ,v!5
ki

p F11
ki

p E dk'
k2e~k,v!G

21E
2`

` dk'
k2 FrM~k,v!

e

2rV~k,v!G5
ki

p

e

e11 E
2`

` dk'
k2 FrM~k,v!

e

2rV~k,v!G . ~8!

To obtain the last expression, it has been assumed that either
e~k,v!5e~ki ,v! or e~k,v!5e~v!. Although the validity of
this approximation is not clear, it is needed to obtain an
analytical expression. The same approximation was made in
the formalism for the thin foil transmission geometry2,3 and

in Ref. 9. The approximation may be justified because of the
weak dependence ofe on k compared with the rest of the
terms in the integrals.9

From Eqs.~2!–~8!, it is straightforward to find the in-
duced potentials @F ind

M ,V(k,v,e)5FM ,V(k,v,e)
2FM ,V(k,v,e51)#

F ind
M ~k,v!5

4p

k2
rM~k,v!H 1e21J

1
4p

k2
FMM~ki!

~e12!~e21!

e~e11!

2
4p

k2
FMV~ki!

~e21!

~e11!
, ~9!

F ind
V ~k,v!52

4p

k2
@FMM~ki!1FMV~ki!#

~e21!

~e11!
,

~10!

where

rM~k,v!5r1
M~k,v!1r2

M~k,v!, ~11!

r1
M~k,v!5

ie

v' i
F2e2 iV i a

V i2k'
G1

ie

v'o
F eiVoa

Vo1k'
G

1
ie

v' i
Feik'a2e2 iV i a

V i1k'
G2

ie

v'o
Feik'a2eiVoa

Vo2k'
G ,
~12!

r2
M~k,v!5

ie

v' i
F e2 ik'a

V i2k'
G2

ie

v'o
F e2 ik'a

Vo1k'
G , ~13!

FMM~ki!5
ki

2p E
2`

1` dk'
k2

rM~k,v!5
ie

v' i
Fe2kia2e2 iV i a

V i1 ik i
G

2
ie

v'o
Fe2 ik ia2eiVoa

Vo2 ik i
G , ~14!

FMV~ki!5
ki

2p E
2`

1` dk'
k2

rV~k,v!5
ie

v' i
F e2 iV i a

V i2 ik i
G

2
ie

v'o
F eiVoa

Vo1 ik i
G , ~15!

with V i ,o5(v2kiv i i ,o)/v' i ,o .
Now, Eqs.~2! and~9!–~15! can be introduced in Eq.~1! to

obtain Keff(E0 ,\v,a,u i ,uo). We have to perform first the
integrals in space and time. In doing this, we have to take
into account that we have a different expression for the
pseudopotentialsFM andFV depending on where the elec-
tron at a given time is located in real space~see Fig. 1!.
Then, the effective inelastic scattering cross section can be
expressed as the sum of four contributions, which correspond
to the losses of the electron while traveling in vacuumKeff

Vi

and in the mediumKeff
Mi for the incoming trajectory and in

vacuumKeff
Vo and in the mediumKeff

Mo for the exit trajectory,

Keff5Keff
Vi1Keff

Mi1Keff
Mo1Keff

Vo. ~16!
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Each term can be found from the following expressions:

Keff
Vi5ReH 2ie

~2p!4\2vx E dkS k'1ki

v i i

v' i
Deik'aF ind

V ~k,v!Fpd~k'2V i !2 i
e2 i ~k'2V i !a

k'2V i
G J , ~17!

Keff
Mi5ReH 22e

~2p!4\2vx E dkS k'1ki

v i i

v' i
Deik'aF ind

M ~k,v!F12e2 i ~k'2V i !a

k'2V i
G J , ~18!

Keff
Vo5ReH 22ie

~2p!4\2vx E dkS k'2ki

v io

v'o
Deik'aF ind

V ~k,v!Fpd~k'1Vo!2 i
e2 i ~k'1Vo!a

k'1Vo
G J , ~19!

Keff
Mo5ReH 2e

~2p!4\2vx E dkS k'2ki

v io

v'o
Deik'aF ind

M ~k,v!F12e2 i ~k'1Vo!a

k'1Vo
G J . ~20!

Equations~16!–~20! give the solution to the problem of findingKeff for a general REELS geometry. However, in the
following we will consider approximations that allow some integrals to be done analytically.

The integrals in momentum are given by the conservation laws for energy and momentum. Unfortunately a complete
analytical integration is not possible. However, with cylindrical coordinates~dk52pdkidk'! and extending the limits of
integration overk' to 2`,k',1`, the integral overk' can be done analytically. With this approximation we do not expect
large errors because the main contribution to the integral comes from small values ofk, and the integrand decreases roughly
as 1/k9 for k→6` using the functional shape for the ELF as in Eq.~30! ~see below!. Assuming againe5e~ki ,v!, it is found
that

Keff
Vi5ReH e

\2vpx

v' i1 iv i i

v' i
E dki

e21

e11

ki~ki1 iV i !

ki
21V i

2 eiV i a@FMM~ki!1FMV~ki!#J , ~21!

Keff
Vo5ReH 2e

\2vpx

v'o2 iv io

v'o
E dki

e21

e11

ki~ki2 iVo!

ki
21Vo

2 e2 iVoa@FMM~ki!1FMV~ki!#J , ~22!

Keff
Mi5ReH 22ie2

\2pv' i
2

a

x E dkiS 1e21D ki

ki
21V i

2 J 1ReH 22e2

\2pv'ovx
E dkiS 1e21D ei ~V i1Vo!21

V i1Vo

ki

ki
21Vo

2 FkiS v i i

v' i
1
v io

v'o
D

2
v

v'o
G J 1ReH e

\2pvx

v' i2 iv i i

v' i
E dkiS 1e21D ki~ki2 iV i !

ki
21V i

2 ~e2kia2eiV i a!r1
M~k'5 ik i!J

1ReH e

\2pvx

v' i1 iv i i

v' i
E dkiS 1e21D ki~ki1 iV i !

ki
21V i

2 ~ekia2eiV i a!r2
M~k'52 ik i!J

1ReH e

\2p2vx

v' i2 iv i i

2v' i
E dkiF ~e12!~e21!

e~e11!
FMM~ki!2

e21

e11
FMV~ki!G ki~ki2 iV i !

ki
21V i

2 ~e2kia2eiV i a!J , ~23!

Keff
Mo5ReH 22ie2

\2pv'o
2

a

x E dkiS 1e21D ki

ki
21Vo

2 J 1ReH 2e2

\2pv' ivx
E dkiS 1e21D e2 i ~V i1Vo!21

V i1Vo

ki

ki
21V i

2 FkiS v i i

v' i
1
v io

v'o
D

2
v

v' i
G J 1ReH 2e

\2pvx

v'o1 iv io

v'o
E dkiS 1e21D ki~ki1 iVo!

ki
21Vo

2 ~e2kia2e2 iVoa!r1
M~k'5 ik i!J

1ReH 2e

\2pvx

v'o2 iv io

v'o
E dkiS 1e21D ki~ki2 iVo!

ki
21Vo

2 ~ekia2e2 iVoa!r2
M~k'52 ik i!J

1ReH 2e

\2p2vx

v'o1 iv io

2v'o
E dkiF ~e12!~e21!

e~e11!
FMM~ki!2

e21

e11
FMV~ki!G ki~ki1 iVo!

ki
21Vo

2 ~e2kia2e2 iVoa!J . ~24!

Notice thatKeff
Vo ,Mo can be obtained fromKeff

ViMi by making the changesv'o→2v' i , v' j→2v'o , v i i→v io , andv io→v i i .
Note also that in generalKeff(E0 ,\v,a,uo ,uo)ÞKeff(E0 ,\v,a,u0 ,u i), i.e., the losses experienced by the electron depend not
only on the line trajectory followed but also on the sense in which it is done. However, in practice the difference is very small.

We must discuss now the limits in which the present model can be compared with model B in Ref. 9. That model is valid
for normal incidence and exit angles of the electrons. This situation is given in the present model by consideringv i i5v io50
andv' i5v'o5v, which gives
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Keff~E0 ,\v,a,0,0!5ReH 22e2i

\2pv2 E dkiS 1e21D ki

ki
21V2 J 1ReS 24e2i

\2pvv2a E dki

ki

~ki
21V2!2 H ki~e2kia22 cosVa!

3~V cosVa1ki sin Va!
e21

e11
1~V21ki

2!sin Va cosVaS 12
1

e D 1~Vekia2V cosVa

1ki sin Va!Fkiekia
~e21!~e12!

e~e11!
22V sin VaS 12

1

e D 22ki cosVa
~e21!

e~e11!G J D , ~25!

whereV5v/v.
This expression is identical to that of model B in Ref. 9

for the limits a→0 anda→`. For other values ofa they
differ by less than 5%. This is clear from Fig. 2, where the
results for the effective inelastic scattering cross section for
Fe at 2000 eV are compared for two different paths traveled
by the electron. This small deviation comes from the differ-
ent mathematical model descriptions for the evaluation of the
induced potentials used in the two models.

In the limit a→`, only the first term in Eqs.~23! and~24!
remains from the general expression forKeff @i.e., Eq.~16!#
and it can be shown that, as expected, for small incidence
and exit angles this term equals the inelastic electron scatter-
ing cross section for electrons traveling in an infinite me-
dium. However, for large incident and exit angles this is not
the case. This is due to the approximations made in the
model.

Until now, we have calculated analytical expressions for
the effective inelastic scattering cross section

Keff(E0 ,\v,a,uo ,uo) as a function of their primary energy
E0, the dielectric function of the systeme~k,v!, the maxi-
mum deptha reached by the electron before being elastically
backscattered, and the angles of incidenceui and exituo of
the electron trajectory. However, the cross section deter-
mined from an experimental REELS spectrum15 has contri-
butions from electrons that have reached different depths in
the solid. To compare this cross section with theory, it is
necessary to estimate the path-length distribution functionQ
for those electrons that have undergone a single inelastic
scattering event.

Small-angle elastic scattering is highly favored but this
does not affect the trajectory significantly. The transport
mean free path for elastic scattering is much larger than the
inelastic mean free path.16 Therefore, most of the REELS
electrons in the energy range of interest have undergone a
single large-angle scattering event. Then, for a fixed inci-
denceui and uo angles, the contribution to the measured
inelastic scattering cross sectionKsc(E0 ,\v,u i ,uo) is a
weighted average over the total path lengthx of
Keff(E0 ,\v,a,u i ,uo) with the weight function given by
Q(E0 ,x,u i ,uo) as

Ksc~E0 ,\v,u i ,uo!

5
*0

`dxQ~E0 ,x,u i ,uo!Keff~E0 ,\v,a,u i ,uo!

*0
`dxQ~E0 ,x,up ,uo!

.

~26!

The path-length distribution function for all the electrons
measured in a REELS experiment is, to a good approxima-
tion, given by15 e2x/L where the characteristic length
L@l.16,17Q in Eq. ~26! is the path-length distribution func-
tion for those REELS electrons that have undergone a single
inelastic loss. If we assume that the inelastic events are in-
dependent, the scattering probability along the path traveled
by the electron will be given by a Poisson distribution, then
the probability that one electron has had only one inelastic
scattering is (x/l)e2x/l. Q is therefore (x/l)e2x/le2x/L.

In general, the inelastic mean free pathl~E0! is related to
the inelastic electron scattering cross section by

l~E0!5F E
0

`

d\vK~E0 ,\v!G21

. ~27!

We can define the effective inelastic mean free path
leff(E0 ,a,u i ,uo) for electrons traveling in the geometry de-
scribed in Fig. 1~a! as

FIG. 2. Effective inelastic scattering cross sectionKeff for Fe at
2000 eV calculated according to modelB in Ref. 9 ~points! and in
this work by Eq.~25! ~full line! for two path lengths~x5l and 4l
with l527.7 Å! traveled by the electron. The dielectric function for
Fe was taken from Ref. 20.
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@leff~E0 ,a,u i ,uo!#
215E

0

Emax
d\vKeff~E0 ,\v,a,u i ,uo!

1@lc~E0!#
21, ~28!

whereEmax is the maximum energy\v available forKeff and
lc accounts for the scattering contribution of the core levels
at binding energies aboveEmax.

18 For a typical case with
Emax'100 eV, the correction introduced bylc in leff is be-
low 10%.

Then, the inelastic scattering cross section determined
from REELS can be written as Eq.~26! with Q(E0 ,x,u i ,uo)
given by

Q~E0 ,x,u i ,uo!5
x

leff~E0 ,a,u i ,uo!
e2x/leff~E0 ,a,u i ,uo!e2x/L.

~29!

In the limit of L@l andleff(E0 ,a,u i ,uo)5l(E0) we obtain
the same expression forKsc as in Ref. 9.

Equation~26! allows us to calculate the inelastic electron
scattering cross section as determined from a REELS experi-
ment in a general geometry, if the dielectric functione~k,v!
of the medium is known. To model the ELF we have used the
expansion in Drude-Lindhard type oscillators10,11,20,21

ImH 1

e~k,v! J 5(
i51

n
Aig i\v

~\2v0ik
2 2\2v2!21g i

2\2v2

3u~\v2Eg!, ~30!

with

\v0ik5\v0i1a i

\2k2

2m
. ~31!

HereAi , gi , andv0ik are the oscillator strength, width, and
energy position of thei th oscillator. The dependence ofv0ik
on k is in general unknown, but Eq.~31! is generally ac-
cepted withai as an adjustable parameter. The step function
u~\v2Eg! is included to describe the effect of an energy
band gapEg in semiconductors and insulators so that
u~\v2Eg!50 if \v,Eg and u51 if \v.Eg . For metals
Eg50. We have decided to parametrize the ELF instead ofe
because the functional shape given to the ELF is closely
related with the features appearing in the experimental loss
spectra. Besides, it allows one to perform analytically a
Kramers-Krönig transformation of Im$1/e% to obtain

ReH 1

e~k,v! J 512(
i51

n Ai~\2v0ik
2 2\2v2!

~\2v0ik
2 2\2v2!21g i

2\2v2

1
2

p E
0

Eg
ImH 1

e~k,z! J zdz

z22v2 . ~32!

From Im$1/e% and Re$1/e%, the real and imaginary parts of
the dielectric function~e5e12i e2! are given by

e15
Re$1/e%

~Re$1/e%!21~ Im$1/e%!2
,

e25
Im$1/e%

~Re$1/e%!21~ Im$1/e%!2
. ~33!

III. RESULTS AND DISCUSSION

We have made a systematic study of the model for Fe and
Si. The ELF for Si and Fe were taken from Ref. 10 and Ref.
20, respectively. The aim of this section is to show the trends
followed byKeff andKsc within this formalism as the vari-
ables involved (E0 ,\v,e,a,u i ,uo) change.

Figure 3 shows the path-length dependence of
Keff(E0 ,\v,a,u i ,uo) for fixed energy~E05800 eV! and ge-
ometry~ui50°, uo545°! for Si ~upper! and Fe~lower!. Four
different path lengthsx have been chosen corresponding to
l/2, l, 2l, and 4l wherel520.6 Å for Si and 13.7 Å for Fe
have been taken from the literature.19

For Si, the surface and bulk plasmons are clearly identi-
fied as the features at;11 and;17 eV, respectively. It is
observed that, as expected, the surface plasmon is attenuated
as the total path length increases. For Fe the effect is similar
with the attenuation of the feature at;8 eV, which is mainly
related with the surface losses.9

For u i5uo50°, pronounced oscillations that vary with
the path are observed forKeff .

9 This is due to the interference
of the field set up by the incoming electron on the outgoing
electron. When the incidence and exit angles differ from
zero, the overlap between the two trajectories decreases and
correspondingly these oscillations disappear. This is consis-
tent with the results in Fig. 3~compare Fig. 3 of this work
with Fig. 6 of Ref. 9 for the case of Fe and Fig. 6 from Ref.
10 for Si!.

Figure 4 shows the geometry dependence of

FIG. 3. Path-length dependence ofKeff for fixed energy
~E05800 eV! and geometry~ui50°, uo545°! for Si ~upper! and Fe
~lower!. The four path lengthsl/2, l, 2l, and 4l with l given by
the corresponding values for Si and Fe atE05800 eV @20.6 and
13.7 Å, respectively~Ref. 19!# have been considered.
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Keff(E0 ,\v,a,u iuo) for fixed primary energy of the elec-
tronsE05800 eV and path lengthx5l, for Si ~upper! and Fe
~lower!. For fixed angle of incidenceui50° three exit angles
uo50°, 45°, and 75° are considered. For glancing exit angles
the surface losses are enhanced with respect to the bulk
losses as expected. Note that although the path length trav-
eled by the electron inside the solid is the same for all angles,
the area increases and by that the effective inelastic mean
free path as defined in Eq.~28! decreases with increasing exit
angle. This is due to the increased time of interaction of the
electron with the solid after it has escaped.

Figure 5 shows the energy dependence of
Keff(E0 ,\v,a,u i ,uo) for fixed path lengthx5l and geom-
etry ~ui50°, uo545°! for Si ~upper! and Fe~lower!. Three
energies~E05300, 800, and 2000 eV! are considered.

The expected overall attenuation ofKeff asE0 increases is
observed. However, an effect that is not obvious is the fol-
lowing: in Fig. 5, the relative contribution of the surface
losses with respect to the bulk losses is enhanced at higher
primary energies. This happens for both materials, but it is
more clearly seen for Si, which has a pronounced surface
plasmon peak. Normally one might expect the relative sur-
face excitations to be highest for the lowest primary energies.
The explanation is given by the fact that the physical exten-
sion of the surface excitations is roughly2 v/vp wherev is
the velocity of the electron and\vp is the bulk plasmon
energy. Then, the region active to surface excitations is pro-
portional to the square root of the primary energy of the
electrons. This means that, if we consider a fixed path for the
electron trajectory, the ‘‘size’’ of the surface region will in-

crease with the primary energy of the electrons. In our case,
the active surface region for electrons of 2000 eV is a factor
2.6 larger than for electrons of 300 eV. This is approximately
the enhancement of the surface plasmon with respect to the
bulk plasmon for these same energies for Si in Fig. 5. The
same effect must be observed in a transmission experiment
as the primary electron energy is changed, as predicted by
Ritchie.2

In Fig. 6, the energy dependence ofKsc(E0 ,\v,u i ,uo)
@Eq. ~26!# for fixed geometry~ui50°, uo545°! for Si ~upper!
and Fe~lower! is shown. Three energies~E05300, 800, and
2000 eV! are considered. The same overall attenuation ofKac
when E0 increases is observed as in Fig. 5. The expected
relative attenuation of the surface losses with respect to the
bulk losses for increasing primary electron energy is ob-
served. This is because electrons with short path lengths have
a relatively higher weight@Eqs.~26! and ~29!#.

Figure 7 shows the geometry dependence of
Ksc(E0 ,\v,u i ,uo) for fixed primary energyE05800 eV for
Si ~upper! and Fe~lower!. Three geometries are considered
with fixed incidenceui50° and exit anglesu050°, 45°, and
75°. As we consider more glancing exit angles the surface
losses are enhanced with respect to the bulk losses as ex-
pected. Note that the area increases and by that the inelastic
mean free path decreases with increasing exit angle. This is,
as above, due to the increased time of interaction of the
electron with the solid after it has escaped.

In the following paper22 the validity of the model pre-
sented here has been tested experimentally.

FIG. 4. Geometry dependence ofKeff for fixed primary energy
of the electronsE05800 eV and path lengthx520.6 Å for Si ~up-
per! andx513.7 Å for Fe~lower!. Three geometries are considered
with a fixed angle of incidenceui50° and the exit anglesuo50°,
45°, and 75°.

FIG. 5. Energy dependence ofKeff for fixed path length (x) and
geometry~ui50°, uo545°! for Si ~upper! and Fe~lower!. Three
energies~E05300, 800, and 2000 eV! are considered. The path
lengthsx513.7 Å for Fe andx520.6 Å for Si are used.
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IV. CONCLUSIONS

A model to calculate inelastic electron scattering cross
sections for electrons traveling in a general reflection geom-
etry is proposed. It is based in the so-called surface reflection
model. Within the formalism developed in this paper, for a
given geometry and energy of the primary electrons, the di-
electric function of the sample is the only input for the cal-
culations of the cross section as determined from analysis
REELS experiments. A systematic study of the behavior of
the model is presented for the case of Si and Fe. Features
related with surface losses are, as expected, enhanced at
lower primary energies and glancing angles.

For a given trajectory the effective inelastic scattering
cross section is almost symmetrical with respect to the inter-
change of the incidence and exit angles. Besides, the ratio of
surface to bulk losses is enhanced for increasing primary
electron energies because the physical extension of the re-
gion where surface losses can take place increases with the
primary electron energy.

The formalism is promising for prediction of the inelastic
scattering cross section for electrons backscattered from the
surface of solids.
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